Regular matrices in the semigroup of hall matrices
نویسندگان
چکیده
منابع مشابه
E-Clean Matrices and Unit-Regular Matrices
Let $a, b, k,in K$ and $u, v in U(K)$. We show for any idempotent $ein K$, $(a 0|b 0)$ is e-clean iff $(a 0|u(vb + ka) 0)$ is e-clean and if $(a 0|b 0)$ is 0-clean, $(ua 0|u(vb + ka) 0)$ is too.
متن کاملGENERALIZED REGULAR FUZZY MATRICES
In this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. This leads to the characterization of a matrix for which the regularity index and the index are identical. Further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.
متن کاملe-clean matrices and unit-regular matrices
let a; b; k 2 k and u ; v 2 u(k). we show for any idempotent e 2 k, ( a 0 b 0 ) is e-clean i ( a 0 u(vb + ka) 0 ) is e-clean and if ( a 0 b 0 ) is 0-clean, ( ua 0 u(vb + ka) 0 ) is too.
متن کاملgeneralized regular fuzzy matrices
in this paper, the concept of k-regular fuzzy matrix as a general- ization of regular matrix is introduced and some basic properties of a k-regular fuzzy matrix are derived. this leads to the characterization of a matrix for which the regularity index and the index are identical. further the relation between regular, k-regular and regularity of powers of fuzzy matrices are dis- cussed.
متن کاملOn the semigroup of square matrices
We study the structure of nilpotent subsemigroups in the semigroup M(n,F) of all n × n matrices over a field, F, with respect to the operation of the usual matrix multiplication. We describe the maximal subsemigroups among the nilpotent subsemigroups of a fixed nilpotency degree and classify them up to isomorphism. We also describe isolated and completely isolated subsemigroups and conjugated e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1993
ISSN: 0024-3795
DOI: 10.1016/0024-3795(93)90512-m